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BACKGROUND AND PURPOSE
Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration.
We hypothesized that the macrocyclic k opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate
antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration.

EXPERIMENTAL APPROACH
C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488
and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with
[D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference
and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim
stress or a single additional session of cocaine place conditioning before redetermining place preference.

KEY RESULTS
Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by
i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively.
[D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally
administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and
prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR
antagonist activity, without affecting locomotor activity.

CONCLUSIONS AND IMPLICATIONS
The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is
active after oral administration and demonstrates blood–brain barrier permeability. These data validate the use of systemically
active peptides such as [D-Trp]CJ-15,208 as potentially useful therapeutics.

Abbreviations
CJ-15,208, cyclo[Phe-D-Pro-Phe-Trp]; CPP, conditioned place preference; DPBS, Dulbecco’s PBS; [D-Trp]CJ-15,208,
cyclo[Phe-D-Pro-Phe-D-Trp]; GNTI, 5′-guanidinylnaltrindole; HSD, honestly significant difference; JDTic, (3R)-7-
hydroxy-N-((1S)-1-[[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl]-2-methylpropyl)-1,2,3,4-tetrahydro-
3-isoquinolinecarboxamide; KOR, k opioid receptor; KOR -/-, k opioid receptor gene-disrupted mice; MOR, m opioid
receptor; MOR -/-, m opioid receptor gene-disrupted mice; nor-BNI, nor-binaltorphimine; p.o., per os; U50,488, (�)-trans-
3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide; SNC80, (+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-
dimethyl-1-piperazinyl)-3-methoxybenzyl]N,N-diethylbenzamide. Note that amino acids are the L-isomer unless
otherwise specified; abbreviations for amino acids follow IUPAC-IUB Joint Commission of Biochemical Nomenclature
(Eur J Biochem (1984) 138: 9–37)
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Introduction
The k opioid receptor (KOR) and dynorphin system play an
important role in the response to stress (McLaughlin et al.,
2003; Shirayama et al., 2004; Wee and Koob, 2010), and are
thought to paradoxically potentiate the rewarding effects of
cocaine (McLaughlin et al., 2003; 2006) while mediating
reinstatement of extinguished cocaine-seeking behaviour
(Valdez et al., 2007; Redila and Chavkin, 2008). Pretreatment
with KOR antagonists prevents stress-induced reinstatement
of extinguished cocaine-seeking behaviour (Beardsley et al.,
2005; Carey et al., 2007; Redila and Chavkin, 2008; Aldrich
et al., 2009; Ross et al., 2012) and decreases compulsive
cocaine-seeking behaviour and intake in the absence of
stress (Wee et al., 2009; 2012), suggesting that KOR antago-
nists hold promise as medications to prevent relapse to
cocaine-seeking behaviour.

Several highly selective non-peptide KOR antagonists
have been identified (nor-binaltorphimine (nor-BNI),
5′-guanidinylnaltrindole and JDTic; for a review, see Metcalf
and Coop, 2005). However, these prototypical KOR antago-
nists exhibit an unusually long duration of antagonism,
lasting for weeks after a single dose (Horan et al., 1991; Carroll
et al., 2004; Metcalf and Coop, 2005; Aldrich and McLaughlin,
2009). Unfortunately, this prolonged duration precludes
certain key preclinical studies and could potentially impair
clinical development. Recently, several new non-peptide KOR
antagonists have been reported (Brugel et al., 2010; Runyon
et al., 2010; Grimwood et al., 2011; Mitch et al., 2011; Peters
et al., 2011; Frankowski et al., 2012), some of which demon-
strated shorter durations of KOR antagonist activity (Runyon
et al., 2010; Peters et al., 2011) or were detected for relatively
short (<8 h) periods in the brain (Grimwood et al., 2011;
Mitch et al., 2011). However, activity after p.o. administration
has been reported for only four KOR selective antagonists
(Beardsley et al., 2005, 2010; Chang et al., 2011; Mitch et al.,
2011), but not for any of the shorter acting antagonists,
prompting a continued search for KOR antagonists.

Recent research on peptides and peptidomimetic ligands
has produced KOR antagonists with selectivity, distribution
and finite (�1 day) duration of action favourable to medica-
tions development. For example, modification of dynorphin
A (1-11) at the termini and incorporation of a cyclic con-
straint yielded zyklophin (Patkar et al., 2005), a potent and
highly selective KOR antagonist in vivo that prevents stress-
induced reinstatement of previously extinguished cocaine-
seeking behaviour after s.c. administration (Aldrich et al.,
2009). The peptide natural product CJ-15,208 was reported to
antagonize a KOR agonist in vitro (Saito et al., 2002). The L-
and D-Trp stereoisomers of this macrocyclic tetrapeptide were
synthesized (Dolle et al., 2009; Kulkarni et al., 2009; Ross
et al., 2010), and both found to bind to KOR with similar
affinities in radioligand receptor-binding experiments (Dolle
et al., 2009; Kulkarni et al., 2009; Ross et al., 2010; 2012).
[D-Trp]CJ-15,208 demonstrated potent KOR antagonism in
vitro in a [35S]GTPGS-binding assay (Dolle et al., 2009; Ross
et al., 2012) and also exhibits KOR antagonism in vivo, pre-
venting the reinstatement of extinguished cocaine condi-
tioned place preference (CPP) after i.c.v. administration (Ross
et al., 2012). However, the KOR antagonist activity of the
D-Trp peptide after systemic (especially oral) administration

and its ability to penetrate into the CNS after systemic admin-
istration were not evaluated in these initial studies.

We hypothesized that the macrocyclic structure and rela-
tively low molecular weight (577 g·mol-1) of [D-Trp]CJ-15,208
would facilitate oral absorption while providing metabolic
stability to permit CNS penetration and central KOR antago-
nist activity. Accordingly, we characterized [D-Trp]CJ-15,208
for KOR antagonism in vivo following s.c. and p.o. adminis-
tration in assays of antinociception and diuresis. The CNS
penetration of orally administered [D-Trp]CJ-15,208 was veri-
fied by the ability of this peptide to prevent the reinstatement
of extinguished cocaine-seeking behaviour and LC-MS/MS.

Methods

Statement on drug and receptor nomenclature
All drug and molecular target terms conform to parameters
specified in the British Journal of Pharmacology’s Guide to
Receptors and Channels (Alexander et al., 2011).

Chemicals
All chemicals other than [D-Trp]CJ-15,208, the D-Trp isomer
of the macrocyclic tetrapeptide CJ-15,208 (Dolle et al., 2009;
Kulkarni et al., 2009; Ross et al., 2010), were obtained from
Sigma-Aldrich (St. Louis, MO, USA). [D-Trp]CJ-15,208 was
initially dissolved daily prior to use in ethanol and Tween-80,
and sufficient warm (40°C) sterile saline added so that the
final vehicle consisted of 1 part ethanol, 1 part Tween-80 and
8 parts sterile saline (0.9%). This vehicle, which has been used
for the solubilization of other hydrophobic opiates for in vivo
studies (Schmidt et al., 2005; Wang et al., 2005), is referred to
herein as ‘1:1:8’.

Synthesis of cyclo[Phe-D-Pro-Phe-D-Trp]
([D-Trp]CJ-15,208)
The linear peptide D-Trp-Phe-D-Pro-Phe was synthesized by
Fmoc solid phase synthesis on the 2-chlorotrityl chloride
resin essentially as described previously (Ross et al., 2010).
The crude linear peptide was cyclized by a modification
of the previously published procedure (Senadheera et al.,
2011). The key modifications were increasing the tempera-
ture of the cyclization reaction to 30°C for 24 h after 12 h at
room temperature, and purifying the macrocyclic peptide by
silica gel chromatography using a hexane/ethyl acetate step
gradient (from 1:1 to 4:1).

Animals
Adult male C57BL/6J mice, weighing 20–25 g obtained from
the Jackson Laboratory (Bar Harbor, ME, USA), were selected
for this study because of their established responses to stress
and cocaine place conditioning (McLaughlin et al., 2003;
Carey et al., 2007; Aldrich et al., 2009). Mu opioid receptor
gene-disrupted (MOR -/-) and kappa opioid receptor gene-
disrupted (KOR -/-) mice were obtained from colonies estab-
lished at Torrey Pines Institute for Molecular Studies from
homozygous breeding pairs of mice obtained from the
Jackson Laboratory. All mice were kept on a 12 h light-dark
cycle and were housed in accordance to the National Institute
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of Health Guide for Care and Use of Laboratory Animals. All
results of animal testing are reported in accordance with
ARRIVE guidelines as stated by the British Journal of Pharma-
cology (Kilkenny et al., 2010; McGrath et al., 2010).

Antinociceptive testing
The 55°C warm-water tail-withdrawal assay was performed in
mice as previously described (Ross et al., 2012), with the
latency of tail withdrawal from the water taken as the end
point. After determining baseline tail-withdrawal latencies,
mice were administered with [D-Trp]CJ-15,208 s.c. or p.o. in
the 1:1:8 vehicle and tested every 10 min thereafter for up to
90 min to determine direct antinociceptive effects. To deter-
mine the antagonist effects of [D-Trp]CJ-15,208 on U50,488-
induced antinociception, mice were pretreated with
[D-Trp]CJ-15,208 for 2 or 3 h to preclude confounding effects
of agonism produced by the macrocyclic tetrapeptide. A cut-
off time of 15 s was used in this study; if the mouse failed to
display a tail-withdrawal response during that time, the tail
was removed from the water and the animal was assigned a
maximal antinociceptive score of 100%. At each time point,
antinociception was calculated according to the formula: %
antinociception = 100 ¥ (test latency – control latency)/(15 –
control latency).

Diuresis testing
To measure diuresis, mice were administered either with
vehicle 1:1:8 (0.3 mL per 30 g body weight, p.o.) or U50,488
(30 mg·kg-1, i.p.) 3 h after p.o. administration of [D-Trp]CJ-
15,208 (1–30 mg·kg-1, p.o.). Mice were then administered
with deionized water (0.5 mL, p.o.) and placed in the
Oxymax/Comprehensive Lab Animal Monitoring System
apparatus (Columbus Instruments, Columbus, OH, USA)
chambers lined on the bottom with pre-weighed paper towels
for 90 min. Urine output was calculated as the difference in
towel weights before and after completion of the 90 min
assay. Note that urine output following p.o. administration of
vehicle (1:1:8; 0.46 � 0.03 mL) did not differ significantly
from that following i.p. administration of saline (0.54 �

0.02 mL; P = 0.07, Student’s t-test).

Sample preparation for LC-MS/MS analysis
Mice were orally administered with [D-Trp]CJ-15,208
(30 mg·kg-1, p.o. in 1:1:8 vehicle) and euthanized at 45, 90
or 180 min post administration. Serum was obtained from
blood samples (200–250 mL), and the proteins precipitated by
adding 4 volumes of ice-cold acetonitrile (MeCN) followed by
centrifugation at 10 000 rpm for 5 min. The supernatants
were collected, dried under vacuum and reconstituted (20%
MeCN, 70 mL) for analysis.

After blood collection, brains were perfused with cold
Dulbecco’s PBS (DPBS, 40 mL) to remove any residual blood,
isolated and frozen. The brains were weighed, washed with
ice-cold DPBS (4 ¥ 1 mL) and homogenized in ice-cold DPBS
(500 mL), followed by addition of ice-cold MeCN/0.1% formic
acid (1 mL) and homogenized again. The homogenates were
centrifuged, the supernatants collected, dried under vacuum
and reconstituted (20% MeCN, 70 uL) for LC-MS/MS analysis
as described below.

Instrumentation and analytical conditions
The LC-MS/MS system consisted of a 3200 Q TRAP® triple-
quadrupole linear ion trap mass spectrometer fitted with a
TurboIonSpray interface (Applied Biosystems/MDS Sciex,
Darmstadt, Germany) and a Shimadzu Prominence HPLC
system. Separation was carried out on a C-18 reversed phase
column (Luna 5 m, 100 Å, 50 ¥ 4.6 mm) with a C-18 reversed
phase guard cartridge (Phenomenex, 4 ¥ 3.0 mm), and the
peptide eluted [retention time (tr) = 6.4 min] using a gradient
of solvents A (10 mM ammonium formate) and B (0.1%
formic acid in MeCN) at 0.5 mL·min-1 flow rate (0–3 min:
50% B, 3–6 min: 50–95% B, 6–8 min: 95% B, 8–9 min:
95–50% B, 9–14 min: 50% B). MS instrument parameters were
spray voltage 5.5 kV, curtain gas 25 psi, source temperature
700°C, ion source gas 1 70 psi, and gas 2 60 psi. The ion
transitions monitored were 578.2/70.2, 578.2/217.2, 600.2/
572.2 and 600.2/425.3 with 150 ms dwell time and 5 ms
pause time between the transitions; the counts for the ion
transitions were summed to give the peak area for [D-Trp]CJ-
15,208. Blank solvent injections were run between each
sample to minimize analyte carry-over from one LC-MS/MS
run to the next.

Rotorod assay to determine locomotor activity
Possible sedative or hyperlocomotor effects of [D-Trp]CJ-
15,208 were assessed by rotorod performance, as modified
from previous protocols (Paris et al., 2011). Following seven
habituation trials (the last utilized as a baseline measure of
rotorod performance), mice were orally administered with
saline, vehicle (1:1:8) or [D-Trp]CJ-15,208 (60 mg·kg-1, p.o.)
and assessed after 10 min in accelerated speed trials (180 s
max. latency at 0–20 rpm) over a 60 min period. Decreased
latencies to fall in the rotorod test indicate impaired motor
performance. Data are expressed as the percent change from
baseline performance.

Cocaine CPP
Mice were conditioned with a counterbalanced cocaine CPP
paradigm using similar timing as detailed previously (Carey
et al., 2007; Paris et al., 2011; see also Figure 9A). The amount
of time subjects spent in each of three compartments was
measured over a 30 min testing period. Prior to place condi-
tioning, the animals did not demonstrate significant differ-
ences in their time spent exploring the left (537 � 12 s) versus
right (568 � 10 s) compartments, resulting in a precondition-
ing response of -26 � 21 s (P = 0.08; Student’s t-test). Daily for
the next 2 days (for acute testing) or 4 days (for reinstatement
testing; see below), mice were administered with vehicle
(0.9% saline) and consistently confined in a randomly
assigned outer compartment, half of each group in the right
chamber, half in the left chamber. In the acute testing, mice
were administered with cocaine (10 mg·kg-1, s.c.), or cocaine
preceded 3 h by [D-Trp]CJ-15,208 (10, 30 or 60 mg·kg-1, p.o.),
and confined to the opposite compartment for 30 min. Con-
ditioned place aversion (McLaughlin et al., 2006) was not
detected in this study under any conditions.

Extinction
Preference tests were completed twice weekly until extinction
was established over a 3 week period (see Figure 9). Extinc-
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tion is defined as a statistically significant decrease in the
time spent in the cocaine-paired compartment during the
extinction trial as compared with the post-conditioning
response after the initial 4 days of cocaine place conditioning
(Carey et al., 2007; Aldrich et al., 2009; Ross et al., 2012).

Reinstatement
Following the demonstration of extinction, reinstatement of
cocaine CPP was examined after either exposure to forced
swim stress (see below) or an additional cycle of cocaine place
conditioning (see Figure 9A) as described previously (Carey
et al., 2007; Aldrich et al., 2009; Ross et al., 2012). Tested mice
were pretreated with either vehicle (1:1:8, p.o.) or [D-Trp]CJ-
15,208 (30 or 60 mg·kg-1, p.o.) daily 3 h prior to forced swim-
ming. A 2 day forced swim stress protocol was used to
produce stress-induced reinstatement of cocaine CPP (Carey
et al., 2007; Aldrich et al., 2009; Ross et al., 2012). Additional
mice were administered vehicle (1:1:8, p.o.) or [D-Trp]CJ-
15,208 (30 or 60 mg·kg-1, p.o.) on days 28 and 29, and 3 h
after the final administration were given an additional
session of cocaine place conditioning on day 29. On the
day following the completion of stress exposure or cocaine
place conditioning, mice were tested for place preference
(Figure 9A).

Statistical analysis
Student’s t-tests and ANOVA with Bonferroni or Tukey’s hon-
estly significant difference (HSD) post hoc tests were used as
appropriate to analyse tail-withdrawal data as described pre-
viously (Ross et al., 2012). Rotorod data were analysed via
repeated measures ANOVA, with drug treatment condition as a
between-groups factor. For all repeated measures ANOVA,
simple main effects and simple main effect contrasts are
presented following significant interactions. CPP data are pre-
sented as the difference in time spent in drug- and vehicle-
associated chambers, and were analysed via one-way ANOVA

with the difference in time spent on the treatment- versus
vehicle-associated side as the dependent measure and condi-
tioning status as the between-groups factor. Where appropri-
ate, Tukey’s HSD post hoc tests were used to assess group
differences. Effects were considered significant when P < 0.05.
All effects are expressed as mean � SEM.

Results

Agonist and antagonist testing of systemically
administered [D-Trp]CJ-15,208 in the mouse
55°C warm-water tail-withdrawal assay
[D-Trp]CJ-15,208 produced only limited (<25%) but signifi-
cant antinociception (Figure 1A) in C57BL/6J wild-type mice
as compared with vehicle (F(4,264) = 24.5, P < 0.0001; two-way
ANOVA) when administered through either the s.c. or p.o.
routes. Significant antinociception lasted no more than
70 min after the largest dose tested (60 mg·kg-1, p.o.; F(7,264) =
19.3, P < 0.0001; two-way ANOVA with Bonferroni post hoc
testing). Vehicle administration (1:1:8, s.c. or p.o.) did not
significantly increase tail-withdrawal latencies over the base-
line response over time (F(1,126) = 1.25, P = 0.27; two-way
repeated measures ANOVA).

Additional characterization of [D-Trp]CJ-15,208-induced
(60 mg·kg-1, p.o.) antinociception was performed with MOR
-/- and KOR -/- mice (Figure 1B). [D-Trp]CJ-15,208 produced
significant antinociception in MOR -/- mice (F(4,208) = 35.7, P <
0.0001; two-way repeated measures ANOVA) that was not sig-
nificantly different from the response of wild-type mice
(P > 0.05, Bonferroni post hoc testing). In contrast, [D-Trp]CJ-
15,208 did not exhibit significant antinociception in KOR -/-
mice when compared with vehicle (P > 0.05, Bonferroni post
hoc testing).

Consistent with results following i.c.v. administration
(Ross et al., 2012), a 2 h pretreatment with [D-Trp]CJ-15,208
resulted in significant dose-dependent KOR antagonism, pre-

Figure 1
Assessment of [D-Trp]CJ-15,208-mediated antinociception using the
55°C warm-water tail-withdrawal assay with repeated measurement
over time. (A) The antinociceptive activity of [D-Trp]CJ-15,208 was
assessed in vivo following s.c. (3 and 10 mg·kg-1) or p.o. (10
and 60 mg·kg-1) administration in C57BL/6J wild-type mice.
Administration of vehicle (1:1:8) alone had no significant effect.
(B) Characterization of [D-Trp]CJ-15,208-induced (60 mg·kg-1, p.o.)
antinociception in MOR -/- mice (circles) and KOR -/- mice (trian-
gles). Note that the Y-axis scale is changed from that used in (A); data
collected from C57BL/6J wild-type mice (squares) are included for
comparison. Mean % antinociception � SEM from six to eight mice
for each group is presented. *Significantly different from vehicle
response, P < 0.05; two-way repeated measures ANOVA with Bonfer-
roni post hoc test.
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venting antinociception induced by the KOR agonist
U50,488 (10 mg·kg-1, i.p.), after either s.c. (F(4,63) = 59.8, P <
0.0001; one-way ANOVA; Figure 2A) or p.o. administration
(F(4,63) = 46.8, P < 0.0001; Figure 2B). Significant KOR antago-
nism produced by a single dose (10 mg·kg-1) of [D-Trp]CJ-
15,208 lasted at least 12 h after s.c. (F(5,79) = 32.5, P < 0.0001;
one-way ANOVA; Figure 3A) and at least 6 h after p.o. admin-
istration (F(5,79) = 60.7, P < 0.0001; one-way ANOVA; Figure 3B).

Orally administered [D-Trp]CJ-15,208 crosses
the blood–brain barrier to antagonize
centrally-located KOR
Oral administration of [D-Trp]CJ-15,208 3 h prior to testing
antagonized the antinociceptive effect of U50,488 adminis-

tered centrally (100 nmol, i.c.v., Figure 4). [D-Trp]CJ-15,208-
mediated antagonism of CNS KOR was dose-dependent, with
significant effects after pretreatment with doses of 30 and
60 mg·kg-1, p.o. (F(4,59) = 189.8, P < 0.0001; one-way ANOVA

with Tukey’s HSD post hoc test; Figure 4).
To further confirm that [D-Trp]CJ-15,208 was both

absorbed after oral administration and crossed the blood–
brain barrier, blood and perfused brains were collected from
mice 45, 90 and 180 min after p.o. administration of the
macrocyclic peptide (30 mg·kg-1, p.o.). The presence of
[D-Trp]CJ-15,208 in both serum and brain homogenate
samples was detected at all three time points after p.o. admin-
istration by LC-MS/MS analysis (Figure 5), indicating oral
absorption and penetration into the CNS.

Figure 2
Dose-dependent antagonism of U50,488-induced antinociception in
the mouse 55°C warm-water tail-withdrawal assay by [D-Trp]CJ-
15,208 pretreatment. The antinociceptive effects of U50,488
(10 mg·kg-1, i.p.) were determined 40 min after administration in
mice pretreated 2 h with vehicle or [D-Trp]CJ-15,208 (1–10 mg·kg-1)
administered by either the (A) s.c. or (B) p.o. routes. Mean %
antinociception � SEM from eight mice for each group is presented.
*Significantly different from the baseline tail-withdrawal latency.
†Significantly different from U50,488 alone-induced antinociception;
one-way ANOVA with Tukey’s HSD post hoc test.

Figure 3
Duration of [D-Trp]CJ-15,208-mediated antagonism of U50,488-
induced antinociception in the mouse 55°C warm-water tail-
withdrawal test. Tail-withdrawal latencies were determined 40 min
after administration of U50,488 (10 mg·kg-1, i.p.) following pretreat-
ment with [D-Trp]CJ-15,208 (10 mg·kg-1) at the times indicated on
the horizontal axis either (A) s.c. or (B) p.o. Mean % antinociception
� SEM from eight mice for each group is presented. *Significantly
different from the baseline tail-withdrawal latency. †Significantly dif-
ferent from U50,488-induced antinociception alone; one-way ANOVA

with Tukey’s HSD post hoc test.
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Orally administered [D-Trp]CJ-15,208
dose-dependently antagonizes KOR
agonist-mediated diuresis
Mice were pretreated 3 h with [D-Trp]CJ-15,208
(1–30 mg·kg-1, p.o.) before administration of vehicle (i.p.) or
U50,488 (30 mg·kg-1, i.p.). Treatment with the macrocyclic
peptide had no effect on diuresis as compared with vehicle
administration (0.39 � 0.04 vs. 0.46 � 0.03 mL urine,
Figure 6). As expected, [D-Trp]CJ-15,208 treatment produced
significant dose-dependent antagonism of U50,488-induced
diuresis (F(6,57) = 10.3, P < 0.0001; one-way ANOVA), returning
urine output to baseline values at a dose of 3 mg·kg-1, p.o.

Oral administration of [D-Trp]CJ-15,208
does not alter locomotor activity
Mice were pretreated orally with saline, vehicle (1:1:8) or
[D-Trp]CJ-15,208 (60 mg·kg-1, p.o.) and tested on the rotorod
apparatus for 60 min. Although all animals showed signifi-
cant improvement in the latency to fall over time compared
with initial baseline (F(2,126) = 7.67, P < 0.0001; two-way ANOVA,

P > 0.05, Bonferroni post hoc test; Figure 7), [D-Trp]CJ-15,208
treatment did not produce significant differences as com-
pared with saline or vehicle-treated mice at any time point
(F(2,126) = 0.06, P = 0.991; two-way ANOVA). There was no sig-
nificant difference in effect between the two vehicle (saline or
1:1:8) treatments (data not shown).

Figure 4
Orally administered [D-Trp]CJ-15,208 crosses the blood–brain barrier
to antagonize U50,488-induced antinociception in the mouse 55°C
warm-water tail-withdrawal test. Antinociception induced by cen-
trally administered U50,488 (100 nmol, i.c.v.) was antagonized in
mice peripherally pretreated 3 h with [D-Trp]CJ-15,208 (10, 30 or
60 mg·kg-1, p.o.). Tail-withdrawal latencies were measured 20 min
after injection of U50,488. Mean % antinociception � SEM from six
to eight mice for each group is presented. *Significantly different
from the baseline tail-withdrawal latency. †Significantly different from
U50,488-induced antinociception alone; one-way ANOVA with Tukey’s
HSD post hoc test.

Figure 5
LC-MS/MS detection of [D-Trp]CJ-15,208 in blood and brain after
p.o. administration. Samples were collected 45, 90 and 180 min
after administration of [D-Trp]CJ-15,208 (30 mg·kg-1, p.o.). Mean
peak area � SEM from four separate mice for each time point is
presented.

Figure 6
Effects of [D-Trp]CJ-15,208 and vehicle on U50,488-induced diuresis.
Diuretic effects of vehicle alone (i.p., white bar) or U50,488
(30 mg·kg-1, i.p., orange bar) were measured during a 90 min time
period in mice. Additional mice were pretreated with [D-Trp]CJ-
15,208 (1–30 mg·kg-1, p.o.) 3 h prior to U50,488 (striped bars) or
vehicle (open green bar) as denoted by plus and minus signs under
bars. Mean urine produced � SEM from 7 to 12 mice for each group
is presented. *Significantly different from the vehicle response.
†Significantly different from U50,488-induced diuresis; one-way
ANOVA with Tukey’s HSD post hoc test.
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Oral administration of [D-Trp]CJ-15,208
does not produce CPP or aversion, and has no
effect on cocaine CPP
Mice demonstrated significant place preference following
2 days of place conditioning with cocaine (F(6,230) = 10.7, P <
0.0001; one-way ANOVA followed by Tukey’s HSD post hoc test;
Figure 8), which was significantly greater than the response
demonstrated by saline place conditioned mice (P < 0.01,
Tukey’s HSD post hoc test). Mice place conditioned with saline
(p.o.) or [D-Trp]CJ-15,208 alone (10, 30 or 60 mg·kg-1, p.o.
daily) demonstrated neither significant preference nor aver-
sion for the macrocyclic peptide-paired side (P > 0.05, Tukey’s
HSD post hoc test; Figure 8, middle bars). Moreover, when
administered daily 3 h before cocaine, [D-Trp]CJ-15,208
(60 mg·kg-1, p.o.) did not alter subsequent cocaine CPP
(P > 0.05, Tukey’s HSD post hoc test; Figure 8, rightmost bar).

Oral administration of [D-Trp]CJ-15,208
prevents stress-induced reinstatement of
extinguished cocaine CPP
Following 4 days of cocaine place conditioning, mice showed
a significant preference for the drug-paired side (F(3,408) =
31.44, P < 0.0001; one-way ANOVA with Tukey’s HSD post hoc
test; Figure 9B, black bar). Extinction was observed within 3
weeks of place conditioning, at which point mice were pre-
treated orally once daily for 2 days with vehicle (1:1:8, p.o.)
or [D-Trp]CJ-15,208 (30 or 60 mg·kg-1, p.o.), and exposed to
forced swim stress or an additional cycle of cocaine place
conditioning (see schematic, Figure 9A). Mice pretreated with
vehicle (1:1:8, p.o.) demonstrated significant reinstatement
of cocaine CPP after exposure to forced swimming (F(5,356) =
21.8, P < 0.0001; one-way ANOVA followed by Tukey’s HSD post
hoc test) or cocaine (F(5,352) = 24.1, P < 0.0001; one-way ANOVA

followed by Tukey’s HSD post hoc test; Figure 9B). Oral
[D-Trp]CJ-15,208 pretreatment dose-dependently prevented
stress-induced reinstatement (P < 0.01 after pretreatment
with 60 mg·kg-1, p.o., Tukey’s HSD post hoc test; Figure 9B,
central bars), but was without effect on cocaine-induced rein-
statement (P > 0.05, Tukey’s HSD post hoc test; Figure 9B,
rightmost bars).

Discussion and conclusions

Pretreatment with KOR-selective antagonists can block stress-
induced reinstatement of cocaine-seeking behaviour
(Beardsley et al., 2005; 2010; Carey et al., 2007; Aldrich et al.,
2009), a property now also demonstrated by [D-Trp]CJ-15,208
after p.o. administration. A growing body of evidence sug-
gests that the prolonged stress-induced release of dynorphins
(Shirayama et al., 2004), the endogenous agonists for KOR,
results in both the potentiation of the rewarding effects of
cocaine (McLaughlin et al., 2003) and reinstatement of extin-
guished cocaine-seeking behaviour (Valdez et al., 2007; Redila
and Chavkin, 2008). While acute administration of KOR ago-
nists blocks cocaine self-administration (Glick et al., 1995;
Shippenberg et al., 2007) and is not reinforcing (Koob et al.,
1986; McLaughlin et al., 2006), repeated exposure to KOR
agonists has been shown to paradoxically increase cocaine-
seeking behaviour (Kuzmin et al., 1997; Negus, 2004;
McLaughlin et al., 2006). Thus, the prophylactic use of KOR
antagonists to prevent stress-induced relapse to cocaine-
seeking behaviour in abstinence subjects may be of signifi-
cant therapeutic benefit.

Figure 7
Locomotor activity of [D-Trp]CJ-15,208 in the mouse rotorod assay.
Mice were administered with vehicle (1:1:8) or [D-Trp]CJ-15,208
orally (60 mg·kg-1, p.o.). The graph depicts the latency to fall from
the rotorod as the mean percent change from baseline performance
� SEM from eight mice for each treatment group.

Figure 8
[D-Trp]CJ-15,208 alone did not produce conditioned place prefer-
ence or alter cocaine-conditioned place preference. Mice received
saline (grey bar), cocaine (10 mg·kg-1, s.c.; black bar) or [D-Trp]CJ-
15,208 (10, 30 or 60 mg·kg-1, p.o., central bars) daily for 2 days.
Additional mice received [D-Trp]CJ-15,208 (60 mg·kg-1, p.o.) 3 h
prior to administration of cocaine and place conditioning for each of
2 days. Mean difference in time spent on the drug-paired side � SEM
is presented from 14 to 24 mice per treatment condition. *Signifi-
cantly different from saline CPP, P < 0.05; one-way ANOVA with
Tukey’s HSD post hoc test.
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Recent results also suggest a broader therapeutic poten-
tial for KOR-selective antagonists in treating the abuse and
relapse to abuse of a number of reinforcing drugs. Of par-
ticular interest, KOR antagonists have recently been shown

over time to decrease both compulsive cocaine-seeking
behaviour and intake in the absence of stress (Wee et al.,
2009; 2012). They may also have potential in the treatment
of opiate abuse, based on promising results with a ‘func-
tional k opioid receptor antagonist’ (buprenorphine plus
naltrexone) in heroin addicts (Rothman et al., 2000; Gerra
et al., 2006) and in rodent studies of morphine CPP and the
reinstatement of extinguished morphine CPP (Cordery et al.,
2012). In addition, KOR antagonists attenuated symptoms of
nicotine withdrawal (Jackson et al., 2010) and stress-induced
reinstatement of nicotine-seeking behaviour (Jackson et al.,
2012).

The KOR antagonism produced by [D-Trp]CJ-15,208 was of
relatively short duration compared with the activity of proto-
typical small molecule KOR antagonists such as nor-BNI
(Metcalf and Coop, 2005). The prolonged KOR antagonism of
these prototypical KOR antagonists, which is the subject of
ongoing study (Melief et al., 2011; Munro et al., 2012), may
complicate preclinical studies, and potentially impair clinical
development. The recent termination of the phase 1 clinical
trials of JDTic due to undisclosed adverse effects (ClinicalTri-
als.gov, NCT01431586) has further spurred the search for new,
safe and shorter acting KOR-selective antagonists. As discussed
above, while several new non-peptide KOR antagonists have
recently been reported, including some with finite durations
of KOR antagonist activity (Runyon et al., 2010; Peters et al.,
2011) or with short residence time in the brain (Grimwood
et al., 2011; Mitch et al., 2011) after peripheral administration,
reports of orally active KOR antagonists have been limited to
only four KOR-selective antagonists: JDTic (Beardsley et al.,
2005), an analogue of JDTic (Beardsley et al., 2010), an ami-
nobenzyloxyarylamide (Mitch et al., 2011), and a biphenylsul-
fonamide (Chang et al., 2011). To date, p.o. activity has not
been reported for any of the shorter acting small molecule KOR
antagonists. Thus, to the best of our knowledge, the present
demonstration of the activity of [D-Trp]CJ-15,208 after p.o.
administration represents the first report of an orally active
KOR-selective antagonist with finite duration of KOR antago-
nist activity, which is very promising and clearly a desirable
trait for potential therapeutic development.

[D-Trp]CJ-15,208 does demonstrate limited (<25%), brief
antinociception after peripheral administration in wild-type
mice. The lack of antinociception in KOR -/- (but not MOR
-/-) mice suggests that [D-Trp]CJ-15,208 possesses weak KOR
agonist activity. The natural product, CJ-15,208 with L-Trp,
also exhibits both KOR agonist and antagonist activities,
although the agonism of that compound is much more
robust and is partially mediated through MOR as well as KOR
(Ross et al., 2012; Aldrich et al., 2013). Notably, the agonist
activity of [D-Trp]CJ-15,208 did not confound the antagonist
testing performed here, as animals were pretreated 2–3 h with
the macrocyclic tetrapeptide to avoid any agonist effects. It is
conceivable that the weak agonist activity of [D-Trp]CJ-
15,208 could produce antagonism by inducing desensitiza-
tion of KOR (McLaughlin et al., 2004) at the higher doses
tested orally here. However, this seems unlikely, given that
i.c.v. administration of [D-Trp]CJ-15,208 at doses that pro-
duced robust KOR antagonism (1 and 3 nmol, i.c.v.) did not
exhibit antinociception (<5%) (Ross et al., 2012), providing
strong evidence that KOR antagonism is not simply due to
receptor desensitization.

Figure 9
Stress-induced reinstatement of cocaine CPP prevented by pretreat-
ment with [D-Trp]CJ-15,208. (A) Schematic of reinstatement and
testing protocol. Vehicle (1:1:8, p.o.) or [D-Trp]CJ-15,208 (30 or
60 mg·kg-1, p.o.) was administered on days 28 and 29, 3 h prior to
initial exposure to forced swim stress (diamonds); for cocaine place
conditioning the mice were treated on days 28 and 29 with vehicle
or peptide, followed by cocaine place conditioning 3 h after the
injection (square) on day 29. (B) Mice exhibited significant prefer-
ence for the cocaine-paired (10 mg·kg-1, s.c. daily for 4 days) envi-
ronment, with extinction occurring by 3 weeks later (left bars). Mice
were then exposed to forced swim stress (centre bars) or an addi-
tional round of cocaine place conditioning (right bars), reinstating
preference in vehicle-treated mice (open bars). Pretreatment with
[D-Trp]CJ-15,208 (30 or 60 mg·kg-1, p.o., striped bars) prevented
stress-induced reinstatement of place preference (centre bars), but
was ineffective at blocking cocaine-induced reinstatement (rightmost
bars). Mean difference in time spent on the drug-paired side � SEM
is presented from 14 to 19 mice per treatment condition; cocaine
place conditioning data on left represent combined responses of 103
mice used in this experiment. *Significantly different from precondi-
tioning place preference response (leftmost bar), P < 0.01. †Signifi-
cantly different from post-CPP response (black solid bar, left), P <
0.01. ‡Significantly different from stress-induced reinstatement of
place preference response (centre), P < 0.005; ANOVA followed by
Tukey’s HSD post hoc test.
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The development of peptidic ligands selective for KOR
potentially offers several additional advantages (Aldrich and
McLaughlin, 2009), including the high specificity of peptides
for their targets, low toxicity, minimal drug–drug interactions
and low accumulation in tissues (Marx, 2005). Notably, a
number of peptides with favourable pharmacokinetic prop-
erties have been developed as therapeutics (Vlieghe et al.,
2010).

The key finding in the present study is that the macrocy-
clic peptide [D-Trp]CJ-15,208 demonstrated dose-dependent
KOR antagonism in the CNS after oral administration. The
demonstration of biological activity by peptides after p.o.
administration is relatively rare (Aldrich and McLaughlin,
2012). Linear peptides such as dynorphin A typically undergo
rapid metabolism by proteases (Reed et al., 2003; Klintenberg
and Andren, 2005) that limit their therapeutic use. Incorpo-
ration of structural modifications (e.g. unnatural and
D-amino acids) into linear peptides can impart sufficient
metabolic stability to facilitate activity after systemic admin-
istration (Aldrich and McLaughlin, 2012), as shown by
E-2078, a metabolically stable analogue of dynorphin A-(1-8)
which exhibits analgesic activity in humans after intramus-
cular injection (Fujimoto and Momose, 1995). In contrast,
macrocyclic peptides are typically stable to proteases and are
instead metabolized by cytochrome P450 enzymes involved in
drug metabolism (Christians and Sewing, 1993; Delaforge
et al., 1997). Moreover, their macrocyclic structure often
results in intramolecular hydrogen bonding which can facili-
tate membrane permeability (Rezai et al., 2006), thereby
enhancing oral absorption and CNS penetration. While
novel, the oral activity of [D-Trp]CJ-15,208 is not without
precedence, given that p.o. formulations of the immunosup-
pressant macrocyclic peptide drug cyclosporine are used clini-
cally (Diasio and LoBuglio, 1996).

The dose-dependent antagonism by orally administered
[D-Trp]CJ-15,208 of centrally (i.c.v.) administered U50,488-
induced antinociception and the prevention of stress-
induced reinstatement of cocaine-seeking behaviour
strongly indicate that the macrocyclic peptide crosses the
blood–brain barrier to reach KOR in the CNS. LC-MS/MS
analysis verified the presence of [D-Trp]CJ-15,208 in both
serum and perfused brain following its p.o. administration.
The systemic administration of this very hydrophobic mac-
rocyclic peptide necessitated the use of solubilizers [ethanol
and Tween-80 (polysorbate 80)], potentially raising ques-
tions concerning the effect these agents could have on the
CNS activity and/or absorption of the macrocyclic peptide.
Tween-80 is commonly used to solubilize and administer
compounds in vivo, including other opioids (Schmidt et al.,
2005; Wang et al., 2005), and is present in a number of clini-
cal formulations such as p.o. formulations of cyclosporine
(Strickley, 2004). While intravenous administration of both
ethanol and Tween-80 has been reported to enhance blood–
brain barrier penetration of drugs (Hanig et al., 1972; Azmin
et al., 1985; Sakane et al., 1989), the small amounts admin-
istered orally in the present study (0.025 mL each) are
unlikely to affect the CNS penetration of the macrocyclic
peptide, and much higher oral doses of Tween-80
(6.4 g·kg-1·day-1 for 28 days) were tolerated in C57BL/6J mice
without evidence of cytotoxicity (Li et al., 2011). It should
be noted, however, that Tween-80 may inhibit efflux

proteins such as P-glycoprotein, although the evidence is
mixed (Goole et al., 2010).

In conclusion, oral administration of the macrocyclic
tetrapeptide [D-Trp]CJ-15,208 produced a dose-dependent,
KOR-selective antagonism that lasted less than 12 h. To the
best of our knowledge, this represents the first report of an
orally active KOR-selective antagonist with a finite (�1 day)
duration of activity. Furthermore, mice pretreated orally with
[D-Trp]CJ-15,208 demonstrated dose-dependent antagonism
of U50,488 administered centrally, and [D-Trp]CJ-15,208
could be detected by LC-MS/MS in both serum and perfused
brain samples, indicating orally administered [D-Trp]CJ-
15,208 is both absorbed from the gastrointestinal tract and
crosses the blood–brain barrier to antagonize KOR in the
CNS. Finally, p.o. administration of [D-Trp]CJ-15,208 pre-
vented the stress-, but not cocaine-, induced reinstatement of
cocaine CPP, consistent with previous demonstrations with
KOR antagonists. Together, these data validate the use of
systemically active peptidic ligands such as [D-Trp]CJ-15,208
as potentially useful therapeutics for treating relapse to drug
abuse.
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